原文标题:过程自动化控制的发展和理论详解(篇3)
过程自动化控制的发展和理论详解(篇3)
【按语】自动控制的科普综述文章少之又少,这一篇是难得好文章,语言精致,生动有趣,把自动控制的发展过程及精髓用非常通俗的语言描述了出来,其中不乏精彩的比喻,对于自动控制人员来说实在是不可多得的宝贵资料。
文章虽然长一些,但非常值得静下心来好好读一读。由于原文有35000字,数十页之长,所以本站编辑根据文章内容,将之分解为“过程控制理论”,“现代控制理论”、“系统辨识”、“工程控制算法”等多篇,供读者阅读学习。
1、PID参数整定的特殊情况;
【本文主要内容】
2、经典控制理论;
3、双增益PID(也叫双模式PID);
3、双增益PID(也叫双模式PID);
本文字数:3782字,阅读大概需要9分钟;
本文地址:http://nyujt.com/jszl/70.html
【作者旁白】
小时候喜欢看杂书,没什么东西看,不正在那十年嘛?不过看进去了两个“化”:机械化和自动化。打小就没有弄明白,这机械化和自动化到底有什么差别,机器不是自己就会动的吗?长大了,总算稍微明白了一点,这机械化是力气活,用机器代替人的体力劳动,但还是要人管着的,不然机器是不知道该干什么不该干什么的;这自动化嘛,就是代替人的重复脑力劳动,是用来管机器的。也就是说,自动化是管着机械化的,或者说学自动化的是管着学机械的……
啊,不对,不对,哪是哪啊!
【参数整定的特殊情况】
在很多情况下,在初始PID参数整定之后,只要系统没有出现不稳定或性能显著退化,一般不会去重新整定。但是要是系统不稳定了怎么办呢?由于大部分实际系统都是开环稳定的,也就是说,只要控制作用恒定不变,系统响应最终应该稳定在一个数值,尽管可能不是设定值,所以对付不稳定的第一个动作都是把比例增益减小,根据实际情况,减小1/3、1/2甚至更多,同时加大积分时间常数,常常成倍地加,再就是减小甚至取消微分控制作用。如果有前馈控制,适当减小前馈增益也是有用的。在实际中,系统性能不会莫名其妙地突然变坏,上述“救火”式重新整定常常是临时性的,等生产过程中的机械或原料问题消除后,参数还是要设回原来的数值,否则系统性能会太过“懒散”。
对于新工厂,系统还没有投运,没法根据实际响应来整定,一般先估计一个初始参数,在系统投运的过程中,对控制回路逐个整定。我自己的经验是,对于一般的流量回路,比例定在0.5左右,积分大约1分钟,微分为0,这个组合一般不致于一上来就出大问题。温度回路可以从2、5、0.05开始,液位回路从5、10、0开始,气相压力回路从10、20、0开始。既然这些都是凭经验的估计,那当然要具体情况具体分析,不可能“放之四海而皆准”。
微分一般用于反应迟缓的系统,但是事情总有一些例外。我就遇到过一个小小的冷凝液罐,直径才两英尺,长不过5英尺,但是流量倒要8-12吨/小时,一有风吹草动,液位变化非常迅速,不管比例、积分怎么调,液位很难稳定下来,常常是控制阀刚开始反应,液位已经到顶或到底了。最后加了0.05的微分,液位一开始变化,控制阀就开始抑制,反而稳定下来了。这和常规的参数整定的路子背道而驰,但在这个情况下,反而是“唯一”的选择,因为测量值和控制阀的饱和变成稳定性主要的问题了。
对工业界以积分为主导控制作用的做法再啰嗦几句。学术上,控制的稳定性基本就是渐近稳定性,BIBO稳定性是没有办法证明渐近稳定性时的“退而求其次”的东西,不怎么上台面的。但是工业界里的稳定性有两个看起来相似、实质上不尽相同的方面:一个当然是渐近稳定性,另一个则是稳定性,但不一定向设定值收敛,或者说稳定性比收敛性优先这样一个情况。具体来说,就是需要系统稳定在一个值上,不要动来动去,但是不是在设定值并不是太重要,只要不是太离谱就行。例子有很多,比如反应器的压力是一个重要参数,反应器不稳定,原料进料比例就乱套,催化剂进料也不稳定,反应就不稳定,但是反应器的压力到底是10个大气压还是12个大气压,并没有太大的关系,只要慢慢地但是稳定地向设定值移动就足够了。这是控制理论里比较少涉及的一个情况,这也是工业上时常采用积分主导的控制的一个重要原因。
【经典控制理论】
前面说到系统的频率,本来也就是系统响应持续振荡时的频率,但是控制领域里有三拨人在捣腾:一拨是以机电类动力学系统为特色的电工出身,包括航空、机器人等,一拨是以连续过程为特色的化工出身的,包括冶金、造纸等,还有一拨是以微分方程稳定性为特色的应用数学出身的。在瓦特和抽水马桶的年代里,各打各的山头,井水不犯河水,倒也太平。但控制从艺术上升为理论后,总有人喜欢“统一”,电工帮抢了先,好端端的控制理论里被塞进了电工里的频率。童子们哪,那哪是频率啊,那是……复频率。既然那些变态的电工帮(啊耶,这下鹿踹真的要来了)能折腾出虚功率,那他们也能折腾出复频率来,他们自虐倒也算了,只是苦了我等无辜之众,被迫受此精神折磨。
事情的缘由是系统的稳定性。前面提到,PID的参数如果设得不好,系统可能不稳定。除了摸索,有没有办法从理论上计算出合适的PID参数呢?前面也提到,动态过程可以用微分方程描述,其实在PID的阶段,这只是微分方程中很狭窄的一支:单变量线性常微分方程。要是还记得大一高数,一定还记得线形常微的解,除了分离变量法什么的,如果自变量时间用t表示的话,最常用的求解还是把exp(λt)代入微分方程,然后解已经变成λ的代数方程的特征方程,解出来的解可以是实数,也可以是复数,是复数的话,就要用三角函数展开了(怎么样,大一噩梦的感觉找回来一点没有?)。只要实根为负,那微分方程就是稳定的,因为负的指数项最终向零收敛,复根到底多少就无所谓了,对稳定性没有影响。但是,这么求解分析起来还是不容易,还是超不出“具体情况具体分析”,难以得出一般的结论。
法国人以好色、好吃出名,但是他们食色性也之后,还不老实,其中一个叫拉普拉斯的家伙,捣鼓出什么拉普拉斯变换,把常微分方程变成s的多项式。然后那帮电工的家伙们,喜欢自虐,往s里塞jω,就是那个复频率,整出一个变态的频率分析,用来分析系统的稳定性。不过说变态,也不完全公平,在没有计算机的年代,各种图表是最有效的分析方法,还美其名曰“几何分析”。频率分析也不例外。
美国佬Evans搞出一个根轨迹(rootlocus),思路倒是满有意思的。他用增益作自变量,将系统的根(不管实的虚的)在复平面上画出轨迹来,要是轨迹在左半平面打转转,那就是实根为负,就是稳定的。再深究下去,系统响应的临界频率之类也可以计算出来。最大的好处是,对于常见的系统,可以给出一套作图规则来,熟练的大牛、小牛、公牛、母牛们,眼睛一瞄,随手就可以画出根轨迹来,然后就可以告诉你,增益变化多多少,系统开始振荡,再增加多少,系统会不稳定,云云。
根轨迹还是比较客气的,还有更变态的奈奎斯特、伯德和尼科尔斯法,想想脑子都大。都是叫那帮电工分子害的。时至今日,计算机分析已经很普及了,但是古典的图示分析还是有经久不衰的魅力,就是因为图示分析不光告诉你系统是稳定还是不稳定,以及其他一些动态响应的参数,图示分析还可以定性地告诉你增益变化甚至系统参数变化引起的闭环性能变化。咦,刚才还不是在说人家变态吗?呃,变态也有变态的魅力不是?哈哈。
以频率分析(也称频域分析)为特色的控制理论称为经典控制理论。经典控制理论可以把系统的稳定性分析得天花乱坠,但有两个前提:一、要已知被控对象的数学模型,这在实际中不容易得到;二、被控对象的数学模型不会改变或漂移,这在实际中更难做到。对简单过程建立微分方程是可能的,但简单过程的控制不麻烦,经验法参数整定就搞定了,不需要费那个麻烦,而真正需要理论计算帮忙的回路,建立模型太困难,或者模型本身的不确定性很高,使得理论分析失去意义。经典控制理论在机械、航空、电机中还是有成功的应用,毕竟从F=ma出发,可以建立“所有”的机械系统的动力学模型,铁疙瘩的重量又不会莫名其妙地改变,主要环境参数都可以测量,但是经典控制理论至少在化工控制中实用成功的例子实在是凤毛麟角,给你一个50块塔板的精馏塔,一个气相进料,一个液相进料,塔顶、塔底出料加一个侧线出料,塔顶风冷冷凝器,塔底再沸器加一个中间再沸器,你就慢慢建模去吧,等九牛二虎把模型建立起来了,风冷冷凝器受风霜雨雪的影响,再沸器的高压蒸汽的压力受友邻装置的影响,气相进料的温度和饱和度受上游装置的影响而改变,液相进料的混合组分受上游装置的影响而改变,但组分无法及时测量(在线气相色谱分析结果要45分钟才能出来),动态特性全变了。
老家伙歌德两百年前就说了,理论是灰色的,生命之树常青。我们知道马鹿喜欢金光的或者银光的,至少也要红的,不过只好将就啦,青绿地干活。在实用中,PID有很多表兄弟,帮着大表哥一块打天下。
【双增益PID(也叫双模式PID)】
比例控制的特点是:偏差大,控制作用就大。但在实际中有时还嫌不够,最好偏差大的时候,比例增益也大,进一步加强对大偏差的矫正作用,及早把系统拉回到设定值附近;偏差小的时候,当然就不用那么急吼吼,慢慢来就行,所以增益小一点,加强稳定性。这就是双增益PID(也叫双模式PID)的起源。想想也对,高射炮瞄准敌机是一个控制问题。如果炮管还指向离目标很远的角度,那应该先尽快地把炮管转到目标角度附近,动作猛一点才好;但炮管指向已经目标很近了,就要再慢慢地精细瞄准。工业上也有很多类似的问题。双增益PID的一个特例是死区PID(PIDwithdeadband),小偏差时的增益为零,也就是说,测量值和设定值相差不大的时候,就随他去,不用控制。
这在大型缓冲容器的液位控制里用得很多。本来缓冲容器就是缓冲流量变化的,液位到底控制在什么地方并不紧要,只要不是太高或太低就行。但是,从缓冲容器流向下游装置的流量要尽可能稳定,否则下游装置会受到不必要的扰动。死区PID对这样的控制问题是最合适的。但是天下没有免费的午餐。死区PID的前提是液位在一般情况下会“自动”稳定在死区内,如果死区设置不当,或系统经常受到大幅度的扰动,死区内的“无控”状态会导致液位不受限制地向死区边界“挺进”,最后进入“受控”区时,控制作用过火,液位向相反方向不受限制地“挺进”,最后的结果是液位永远在死区的两端振荡,而永远不会稳定下来,业内叫hunting(打猎?打什么?打鹿?)。双增益PID也有同样的问题,只是比死区PID好一些,毕竟只有“强控制”和“弱控制”的差别,而没有“无控区”。在实用中,双增益的内外增益差别小于2:1没有多大意义,大于5:1就要注意上述的持续振荡或hunting的问题。
文章写于2015年,作者晨枫,具有扎实的理论基础和丰富的现场经验,目前旅居加拿大,一直从事化工控制方面的工作和研究。
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
原文网址:http://www.nyujt.com//jszl/70.html